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Abstract: A purely peer-to-peer sidechain system is proposed to enable direct integration with
Bitcoin’s security model through real-time synchronization and proof-of-work commitments. By
referencing Bitcoin’s canonical chain, we present an imaginary sidechain which secures transactions
against private forks, ensuring valid withdrawals as well as allowing for modular scalability and
efficient transaction processing. This paper outlines mechanisms for secure peg-ins and peg-outs,
discusses data availability considerations, and introduces methods to maintain network integrity
without compromising decentralization.

1 Introduction
The scalability and programmability limitations of Bitcoin[1] have led to the exploration of sidechains
as a means to extend its capabilities without altering the main protocol. Existing solutions often
struggle with securely linking sidechain operations to the Bitcoin blockchain, particularly during
asset redemption back to the main chain.

We propose an imaginary sidechain architecture, termed BitSync, that leverages real-time
synchronization with Bitcoin, utilizing proof-of-work commitments to intrinsically link sidechain
transactions to Bitcoin’s canonical chain. This design prevents private forks from manipulating
withdrawals and maintains the integrity of both chains. Focusing on simplicity and unconditional
security tied directly to Bitcoin, it offers optional scalability and flexibility features. Given recent
advancements such as BitVM[2] and the possibilities to remove private forks through block intro-
spection, we revisit the concept of sidechaining and combine aspects of merged-mining[4](AuxPOW)
with it to create a complete modular settlement layer solution BitSync that extends the use case of
Bitcoin with full Bitcoin PoW longest-chain security.

2 Unifying Sidechains and AuxPOW
The quest to extend Bitcoin’s capabilities has led to various proposals, notably AuxPOW and
sidechains. AuxPOW enables miners to use their proof-of-work for multiple chains, but it introduces
security vulnerabilities where miners can attack auxiliary chains at minimal cost. Sidechains, on
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the other hand, tightly couple their consensus to Bitcoin’s, inheriting its security but often facing
challenges with slow confirmation times and potential invalid block inclusion.

Our design presents a novel integration of sidechain and AuxPOW concepts, forming a harmo-
nious system that leverages the strengths of both while mitigating their weaknesses. By synchro-
nizing the sidechain with Bitcoin in real-time and utilizing mutual proof-of-work commitments, we
create a sidechain that is intrinsically linked to Bitcoin’s security without being susceptible to the
typical attacks associated with AuxPOW.

2.1 Solving Security Challenges
The Bitcoin-BitSync integration addresses key security concerns. The first is to prevent miner
attacks where auxiliary chains can be selfishly mined without giving up their Bitcoin rewards. This
design prevents that due to the mutual commitments-Bitcoin blocks referencing sidechain blocks
and sidechain blocks referencing Bitcoin blocks.

The second is eliminating private forks which is part of the critical attack surface for interoper-
ability with Bitcoin itself via a trust-minimized bridge. Eliminating the possibility of private forks
would enable a fully decentralized bridge with Bitcoin with native Bitcoin longest-chain security.

2.2 Challenges with Traditional Sidechain Designs
Sidechains have long been proposed as a method to extend Bitcoin’s functionality without altering
the main protocol. However, current implementations also fail to inherit bitcoin’s security and/or
fail to successfully present decentralization mechanisms. Key concerns include fork handling and
invalid blocks. Consider If Bitcoin block Bi references sidechain block SCi, and the subsequent
Bitcoin block Bi+1 references a conflicting sidechain block SC ′

i (a fork), it raises questions about
which sidechain block is valid. This issue is exacerbated if SCi is invalid according to sidechain
consensus rules, yet referenced by a valid Bitcoin block.

Security of node consensus as well as light clients is also a concern as the sidechain may end up
accepting invalid sidechain blocks without some sort of sybil-attack prevention such as AuxPOW
or full validation of state.

Given that we use mutual Proof-of-Work commitments through AuxPOW, the sidechain blocks
are validated by ensuring they reference the canonical Bitcoin chain. This eliminates forks and
low-cost attacks against various types of network nodes.

We may also leverage the use of zero-knowledge proofs[6] to enhance light-client security and
validate in efficient ways. This is especially useful for a trust-minimized bridge between Bitcoin
and BitSync.

2.3 Challenges with Traditional AuxPOW
Traditional AuxPOW allows miners to use the same proof-of-work (PoW) to mine on multiple
blockchains simultaneously. While efficient, this approach introduces potential vulnerabilities such
as low-cost attacks due to the fact that mining rewards of Bitcoin remain unaffected.

This creates a scenario where rational miners might have incentive to destabilize an auxiliary
chain for financial gain.

However the use of AuxPOW requires that the sidechain block’s proof-of-work satisfies the
sidechain’s own difficulty level, even when mined alongside Bitcoin’s block. This has several benefits
in our design:
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• Efficient Proofs for Syncing: Nodes can sync to the longest chain with the most cumulative
work without tracking the full set of Bitcoin headers, expediting the syncing process.

• Prevention of Attacks: By ensuring sidechain blocks meet their own difficulty levels, Aux-
POW helps prevent attacks such as the injection of fake sidechain blocks or manipulation of
consensus. Due to the fact that there can only be one coinbase transaction in Bitcoin and
that it contains only unique commitments per chainID, we can secure against private forks.
Other designs such as meta-transactions/anchoring or layering on Bitcoin to create off-chain
consensus do not protect against the ability to create private forks [7][8][9][10][11].

• Robustness for Light Nodes and Full Nodes: Both light and full nodes benefit from
AuxPOW’s mechanisms, contributing to the overall security and integrity of the sidechain.

The combination of AuxPOW and the sidechain design elements creates a robust design enables
incentive for rational miner behavior to mine the sidechain for rewards and build on the longest
chain. As committing to any other strategy would not be profitable. Since the sidechain blocks
are connected with the Bitcoin main chain the attack costs and security becomes equivalent. See
Appendix A for a formal analysis on AuxPOW.

2.4 Eliminating Private Forks with OP_BLOCKHASH

To prevent attacks involving private forks and conflicting sidechain blocks we may leverage the
use of a theoretical op code such as OP_BLOCKHASH as described by the BitVM paper. This would
allow us to enforce that when settling on Bitcoin to peg-out from BitSync that neither Bitcoin
nor the sidechain are residing on a private fork due to the mutual-chain connection between the
chains. Combining the AuxPOW safety checks against duplicate chainID commitments in the
Bitcoin coinbase merkle root as well as the enforcement of settlement on the canonical Bitcoin
chain result in a reciprocal affect of ensuring the sidechain nor Bitcoin can be privately mined and
presented to a BitVM bridge misrepresenting state.

To secure peg-outs, OP_BLOCKHASH allows a script to verify the hash of a specific block in the
canonical Bitcoin chain. When a user burns coins on BitSync to initiate a withdrawal, they create
a Zero-Knowledge Proof (ZKP) that the burn occurred in a valid BitSync block linked to a known
Bitcoin block hash as a public witness. BitVM enables the verification of such ZKPs within Bitcoin’s
existing scripting capabilities.

The peg-out transaction on Bitcoin includes this ZKP and uses OP_BLOCKHASH to ensure the
referenced block hash (from the public witness) aligns with the canonical Bitcoin chain:

<block_height> OP_BLOCKHASH

By verifying the block hash within the script, we ensure that the withdrawal is only valid if
it references a block in the main Bitcoin chain, thus eliminating the risk of private forks. This
method tightly binds the sidechain state to Bitcoin’s canonical chain without requiring changes to
the consensus rules.

2.5 Demonstrating Enhanced Security
By addressing the standard criticisms, we demonstrate that our design not only meets but exceeds
the security expectations for sidechains:
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1. Resolution of Fork Conflicts: In the event that Bitcoin block Bi+1 references a conflicting
sidechain block SC ′

i, sidechain nodes validate both SCi and SC ′
i according to consensus rules.

The valid block is accepted, and the invalid one is discarded, regardless of Bitcoin’s referencing.

2. Protection Against Invalid Blocks: If a sequence of Bitcoin blocks Bi+1, Bi+2, . . . refer-
ence invalid sidechain blocks, the sidechain nodes will not accept these blocks. The sidechain’s
consensus remains secure, and the invalid references in Bitcoin do not undermine it.

3. Robustness of SPV Clients: With the integration of zero-knowledge proofs, SPV clients
on the sidechain can securely verify the validity of sidechain blocks, maintaining security even
in the presence of invalid block references in Bitcoin.

4. Equivalence in Consensus Strength: Through these mechanisms, we can confidently
assert that the sidechain’s consensus is as strong as Bitcoin’s. Any attack on the sidechain
would require resources and efforts equivalent to attacking Bitcoin itself.

3 Bitcoin Integration

3.1 Auxiliary Proof-of-Work (AuxPOW) Integration
Auxiliary Proof-of-Work (AuxPOW) allows BitSync to leverage the proof-of-work done on the
Bitcoin blockchain, enabling miners to mine both chains simultaneously without additional compu-
tational effort. This integration is achieved through AuxPOW, where the work done on the parent
blockchain (Bitcoin) is accepted by the auxiliary blockchain (BitSync) as valid proof-of-work.

3.1.1 Mechanism of AuxPOW

In our design, the following steps are undertaken to implement AuxPOW:

1. Mining on Bitcoin (Parent Blockchain):

• Miners construct a Bitcoin block following all standard consensus rules.

• In the coinbase transaction’s scriptSig, miners include:

– An AuxPOW Tag, a predefined magic value (e.g., 0xfa, 0xbe, ’m’, ’m’) indi-
cating the presence of AuxPOW data.

– A Merkle Root of Auxiliary Block Headers, which includes the hash of the
BitSync block header H(SCi).

2. Constructing the Merkle Tree of Aux Block Headers:

• When mining multiple auxiliary chains, miners construct a Merkle tree of all auxiliary
block headers.

• The position of each auxiliary chain in the Merkle tree is determined using a deterministic
algorithm based on the chain’s identifier and a nonce (merkle_nonce).

• For BitSync, miners ensure that H(SCi) is included in this Merkle root.

3. Including Parent Block Header in BitSync Block:
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• The BitSync block includes the Bitcoin block header Bi as part of its own block header.
• Additionally, the BitSync block contains the AuxPOW proof, which includes:

– The coinbase transaction from the Bitcoin block.
– The Merkle branch linking the coinbase transaction to the Bitcoin block’s Merkle

root.
– The Merkle branch linking H(SCi) to the Merkle root of auxiliary block headers in

the coinbase scriptSig.
– The Bitcoin block header Bi.

3.1.2 Validation by BitSync Nodes

BitSync nodes perform the following steps to validate an AuxPOW block:

1. Verify the Bitcoin Block Header:

• Confirm that the Bitcoin block header Bi is valid and meets Bitcoin’s proof-of-work
requirements.

• Ensure that hash of the Bitcoin block header H(Bi) is part of the Bitcoin canonical chain
by checking against known block headers.

2. Validate the Coinbase Transaction:

• Extract the coinbase transaction from the AuxPOW proof.
• Verify that the coinbase scriptSig contains the AuxPOW Tag and the Merkle root of

auxiliary block headers.

3. Verify Merkle Branches:

• Validate the Merkle branch linking the coinbase transaction to the Bitcoin block’s Merkle
root.

• Validate the Merkle branch linking H(SCi) to the Merkle root in the coinbase scriptSig.

4. Check Proof-of-Work:

• Ensure that the Bitcoin block’s proof-of-work meets BitSync’s difficulty requirements.
• Since Bitcoin’s difficulty is higher, this condition is typically satisfied.

5. Confirm Mutual Commitment:

• Verify that the BitSync block header includes H(Bi) correctly.
• This establishes the reciprocal link between the chains.

3.2 Handling Bitcoin Reorganizations in BitSync
Bitcoin reorganizations (reorgs) occur when a longer chain replaces a previously accepted chain,
typically due to differences in cumulative proof-of-work. In the context of BitSync, reorgs are
naturally handled due to the tight coupling between BitSync and Bitcoin through AuxPOW and
block references.
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3.2.1 Reorg Process in BitSync

In BitSync, every block is merge-mined with Bitcoin, meaning each BitSync block references a
specific Bitcoin block and vice versa. This 1:1 relationship ensures that any reorganization in
Bitcoin will directly impact BitSync.

When Bitcoin undergoes a reorg, where some blocks are removed and replaced by a new chain,
BitSync will follow Bitcoin’s chain and roll back to the last valid Bitcoin block that was merge-
mined with BitSync. This ensures that BitSync always follows Bitcoin’s canonical chain, and any
blocks that are part of a Bitcoin reorg will also be rolled back in BitSync.

3.2.2 Depth of Reorgs and Their Impact

The depth of a Bitcoin reorg will determine how far back BitSync will need to roll back. Since
not all Bitcoin blocks will include an AuxPOW commitment to BitSync, only the Bitcoin blocks
that do will trigger a rollback in BitSync. For example, if a Bitcoin reorg removes several blocks,
BitSync will roll back to the last merge-mined Bitcoin block that referenced a valid BitSync block.

In this way, BitSync guarantees that it follows the canonical Bitcoin chain, even in the event of
deep reorgs, ensuring that all BitSync blocks remain valid and part of Bitcoin’s longest chain.

3.2.3 Reorg Process in BitSync

In BitSync, each block is merge-mined with Bitcoin, meaning that a valid BitSync block must be
tied to a specific Bitcoin block. However, not all Bitcoin blocks will be merge-mined with BitSync.

When a Bitcoin block that is not merge-mined is reorganized out of the chain, it doesn’t affect
BitSync. In this scenario, BitSync will follow Bitcoin’s reorganization but only roll back the blocks
that are linked via merge-mining.

Below, we show an example where Bitcoin blocks B3 and B4 are reorganized out. B3 was not
merge-mined with BitSync, but B4, which was merge-mined with BitSync’s SC3, is also removed
during the reorg. Bitcoin continues from B2 (merge-mined with SC2), and the new canonical
Bitcoin tip B5 (merge-mined with SC4) is built on top of B2. BitSync, in turn, reorganizes out
SC3, and SC4 builds off of SC2.

In this diagram:
Bitcoin undergoes a reorg where blocks B3 and B4 are removed. B3 was not merge-mined, so

it doesn’t directly affect BitSync, but B4, which was merge-mined with SC3, forces a rollback in
BitSync. As a result, SC3 is reorganized out, and the new SC4 block is built off of SC2, just as B5

builds off of B2 in Bitcoin.
This process guarantees that BitSync follows Bitcoin’s canonical chain and reflects any changes

that occur due to reorganization.

3.2.4 Finality in BitSync

While Bitcoin itself does not provide strict finality, in practice, after a sufficient number of blocks
have been mined on top of any given block, the probability of a reorganization diminishes signifi-
cantly. For BitSync, finality is directly linked to Bitcoin’s chain.

Since every BitSync block is merge-mined with Bitcoin via AuxPOW, the "finality" of a BitSync
block is inherently tied to Bitcoin’s reorg depth. Once a certain number of Bitcoin blocks are added
on top of a BitSync-linked Bitcoin block, both Bitcoin and BitSync can probabilistically consider
the chain to be finalized.
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Bitcoin Block B1

Merge-Mined
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Bitcoin Block B2
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with SC2
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Block SC1
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Block SC3

Reorged

BitSync
Block SC4

Figure 1: BitSync reorganization following Bitcoin reorg.

In the event of a deep Bitcoin reorg, BitSync will roll back to the last valid merge-mined block
and follow the longest Bitcoin chain. Therefore, BitSync’s security and finality assumptions are
aligned with Bitcoin’s.

3.2.5 Implications for Peg-ins and Peg-outs

Since peg-ins and peg-outs in BitSync are linked to Bitcoin blocks, reorgs in Bitcoin will natu-
rally cause BitSync to adjust accordingly. Any pending transactions, such as peg-outs, will be
re-evaluated following a reorg, ensuring that only transactions based on the canonical Bitcoin chain
are processed. This guarantees that the integrity of the sidechain is maintained even in the face of
significant Bitcoin network reorganizations.

4 Secure Redemption Process
To securely withdraw bitcoins from BitSync back to the Bitcoin network, we utilize a non-interactive
zero-knowledge proof within an optimistic verification framework such as BitVM. This approach
ensures execution safety in a trust-minimized environment, allowing users to redeem assets without
intermediaries or interactive protocols.

4.1 Real-Time Synchronization
By synchronizing the sidechain with Bitcoin in real-time, we establish a tight coupling between
the two chains. Each BitSync block includes a reference to the latest Bitcoin block hash, and
conversely, Bitcoin miners include a commitment to the latest BitSync block hash in their coinbase
transactions. This mutual commitment ensures that both chains are aware of each other’s state at
the time of block creation, preventing manipulation through private forks.
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Diagram 1: Reciprocal Commitments between Bitcoin and BitSync

Bitcoin Block

- Standard Transactions
- Coinbase Transaction:

scriptSig:
[extraNonce]
[AuxPOW Tag]
[AuxPOW Merkle Root]

- Merkle Root includes H(SCi)

BitSync Block

- BitSync Transactions
- Header includes H(Bi)
- AuxPOW Proof:

Merkle Branch linking to Coinbase
Parent Block Header

Mutual Commitment Link

Figure 2: Reciprocal Commitments between Bitcoin and BitSync using AuxPOW

4.2 Withdrawal Mechanism
A user initiates a withdrawal by performing a proof-of-burn on BitSync, calling a burn or locking
contract function, effectively removing the tokens from circulation and signaling the intent to with-
draw. The burn transaction includes the user’s Bitcoin address and is included in a BitSync block
that references a specific Bitcoin block.

A non-interactive zero-knowledge proof is generated, demonstrating that the burn transaction
occurred in a valid BitSync block linked to the canonical Bitcoin chain. This proof is designed to
be verifiable on the Bitcoin network through a system like BitVM.

5 Trust-Minimized Withdrawals Leveraging BitVM
To facilitate secure and efficient withdrawals from BitSync back to the Bitcoin network, we employ
an optimistic verification framework inspired by BitVM. This approach enables arbitrary program
execution on Bitcoin without altering its consensus rules, allowing us to achieve trust-minimized
withdrawals that connect directly to Bitcoin’s security model without introducing new security
assumptions.

When a user wishes to withdraw bitcoins, they initiate a burn transaction on the BitSync
sidechain, effectively removing the tokens from circulation. This transaction includes the user’s
Bitcoin address and is recorded in a BitSync block that references a specific Bitcoin block hash,
establishing a clear linkage between the sidechain and the main chain.

A non-interactive zero-knowledge proof may demonstrate that the burn transaction occurred
in a valid BitSync block linked to Bitcoin’s canonical chain. This proof is constructed within the
BitVM framework, which allows for the verification of arbitrary computations, such as confirming
the validity of the burn transaction and its inclusion in the sidechain’s state.

By submitting this proof as part of a special transaction on the Bitcoin network, the user invokes
a script that verifies the proof’s validity and ensures that the referenced block hash corresponds to a
block in the canonical Bitcoin chain. This process leverages Bitcoin’s existing scripting capabilities,
requiring no changes to the consensus rules or additional trust assumptions.

The verification is permissionless; any participant in the network can validate the proof and, if
necessary, challenge invalid withdrawals. This mechanism aligns with Bitcoin’s security principles,
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relying on collective verification rather than trusted intermediaries. It ensures that fraudulent
attempts are detected and prevented by the network itself.

By integrating BitVM’s capabilities, we reduce on-chain complexity and resource requirements.
Under normal circumstances, withdrawals are processed efficiently with minimal on-chain interac-
tion. Only in cases where a dispute arises does additional verification occur, which is essential for
maintaining security and integrity.

This approach connects the sidechain directly to Bitcoin’s proof-of-work consensus, anchoring
the sidechain’s state to the main chain without introducing new security assumptions. By leveraging
BitVM, we enhance Bitcoin’s functionality, enabling trust-minimized withdrawals while preserving
the foundational principles of decentralization and trustlessness inherent in the Bitcoin network.

5.1 Verification on Bitcoin Network
Submitting the proof as part of a special transaction on the Bitcoin network, the user includes
the zero-knowledge proof and the Bitcoin block hash. The transaction script uses an operation
like OP_BLOCKHASH to verify that the provided block hash corresponds to a block in the canonical
Bitcoin chain.

5.2 Preventing Private Fork Attacks
This method eliminates the possibility of private forks being used to manipulate withdrawals. The
proof must reference a block hash recognized by Bitcoin’s consensus; any attempt to use a block
from a private fork or a less-work chain results in verification failure.

5.3 Outcome of the Withdrawal Process
The withdrawal process results in a binary outcome:

• Valid Proof: If the proof is valid and unchallenged, the transaction is processed, and the
bitcoins are released to the user’s address.

• Invalid Proof or Challenge: If the proof is invalid or successfully challenged, the transac-
tion is rejected.
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Withdrawal Process Diagram

User

1. Burn tokens on BitSync

BitSync Network

- Burn transaction

2. Generate zero-knowledge proof

3. Submit Bitcoin transaction with proof

Bitcoin Network

- Transaction includes zk-SNARK proof
- BitVM + witness block hash check

Figure 3: Diagram of the Withdrawal Process

6 Depositing Bitcoins into BitSync
To securely transfer bitcoins into BitSync, we utilize the sidechain nodes’ awareness of the Bitcoin
blockchain. Users wishing to deposit bitcoins begin by locking their bitcoins on the Bitcoin network,
sending them to a special BitVM output script. The funds cannot be spent on the Bitcoin network
except under withdrawal conditions described above.

6.1 Creating a Deposit Transaction
After locking the bitcoins, the user creates a deposit transaction on BitSync, referencing the Bitcoin
transaction containing the locked funds. This deposit transaction includes a Simplified Payment
Verification (SPV) proof of the Bitcoin transaction, allowing BitSync nodes to verify the deposit
without downloading the entire Bitcoin blockchain.

6.2 Verification by BitSync Nodes
BitSync nodes validate the deposit transaction through the following steps:
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1. Verify the SPV Proof: Confirm that the Simplified Payment Verification (SPV) proof
provided by the user is valid and that the Bitcoin transaction locking the bitcoins is included
in a block on the Bitcoin blockchain.

2. Check Inclusion in Canonical Chain: Ensure that the Bitcoin block containing the locking
transaction is part of the canonical (longest) proof-of-work chain recognized by the Bitcoin
network.

3. Validate the Merkle Path: Verify the Merkle branch linking the locking transaction to
the block header, ensuring the transaction’s integrity and its inclusion in the block.

4. Confirm Block Header Authenticity: Check that the block header is valid, adheres to
Bitcoin’s consensus rules, and is accepted by the majority of the network.

5. Ensure Funds Are Unspent: Confirm that the bitcoins locked in the transaction have not
been spent elsewhere on the Bitcoin network since the locking transaction.

6.3 Preventing Double-Spending
BitSync effectively prevents double-spending by maintaining synchronization with the Bitcoin blockchain
and utilizing SPV proofs. Since BitSync witnesses the canonical chain of Bitcoin and reorganizes
with it the reflection of Bitcoin state guarantees the correctness and security of the SPV proof
which would recognize and allow for the bitcoin deposit into BitSync.

11



Deposit Process Diagram

User

1. Lock bitcoins in special output on Bitcoin

Bitcoin Network

- Transaction locking the bitcoins

2. Transaction included in Bitcoin block

Bitcoin Block Header

(part of canonical chain)

3. Create deposit transaction on BitSync with SPV proof

BitSync Nodes

- Verify SPV proof
- Credit user’s account

4. User’s balance updated in BitSync

Figure 4: Diagram of the Deposit Process

7 Data Availability and Network Integrity
BitSync can employ a hash-based data availability mechanism, ensuring all necessary data for
transaction verification is accessible without relying on slashing mechanisms common in proof-of-
stake systems. This approach aligns with Bitcoin’s proof-of-work context and avoids introducing
additional trust assumptions.

Transactions are processed off-chain and settled on-chain through state commitments and data
availability guarantees, improving throughput without compromising security.
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8 Maintaining Decentralization and Network Health

8.1 Role of Special nodes
Special nodes in the network can be tasked with increasing the decentralization of the mesh-network
and would not influence consensus or the protocol’s security. Their incentive may come from network
rewards and transaction fees for staying online and contributing to the system’s health.

8.2 Decentralized Sequencing and MEV Protection
These Special nodes act as decentralized sequencers for rollups, facilitating the ordering of transac-
tions to enhance liveness and alignment. This setup protects against centralized manipulation but
also can mitigate risks associated with Maximal Extractable Value (MEV) by distributing sequenc-
ing responsibilities via auction mechanisms and race mechanics to solve-and-collect revenue.

9 Alternative Approaches and Considerations

9.1 Superblocks and NIPoPoWs
In scenarios where direct block hash verification is not possible, such as the absence of an operation
like OP_BLOCKHASH, superblocks and Non-Interactive Proofs of Proof-of-Work (NIPoPoWs[3]) can
be employed. However, although the security using superblocks will be great and likely better than
existing designs, it is not unconditional unlike using OP_BLOCKHASH.

9.2 Potential Opcode Enhancements
The inclusion of an operation like OP_CAT[5] in Bitcoin would facilitate the creation of more complex
scripts, potentially enabling direct block hash verification through script introspection. This capa-
bility would enhance the security and functionality of BitSync interactions but requires consensus
changes to the Bitcoin protocol through a soft fork.

Historically, OP_CAT was disabled due to potential risks like denial-of-service (DoS) attacks,
where an attacker could create scripts that consume excessive computational resources by concate-
nating large amounts of data. However, recent discoveries and proposals have mitigated these risks,
making it safer to consider re-enabling OP_CAT. The OP_CAT op-code may make it easier to emulate
OP_BLOCKHASH like capabilities and make it more efficient. There is also work in this direction to
emulate these op-codes using ZKPs without any changes necessary to Bitcoin[12]

10 Conclusion
We have presented a sidechain design that integrates tightly with Bitcoin’s security model through
real-time synchronization and proof-of-work commitments. By requiring BitSync transactions to
reference canonical Bitcoin block hashes and utilizing ZKPs for efficient verification, withdrawals
are secured and resistant to manipulation through private forks.

BitSync enables flexibility and scalability through modular designs like rollups. The network
maintains decentralization and integrity without compromising security by leveraging special nodes
for governance and network support.
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This architecture offers a robust foundation for extending Bitcoin’s capabilities while preserving
its core principles of security and decentralization.

A Formal Analysis of the Withdrawal Mechanism
In this appendix, we provide a detailed mathematical analysis of the peg-out (withdrawal) process
in BitSync. We demonstrate how the design prevents private fork attacks and ensures secure Bitcoin
redemption by integrating formal proofs, pseudocode from the AuxPOW protocol specification, and
security analysis. The analysis covers the prevention of private forks in both the BitSync sidechain
and the Bitcoin blockchain.

A.1 Notation and Definitions
We define the following:

• B: The Bitcoin blockchain.

• S: The BitSync sidechain.

• Bi ∈ B: The i-th block in the Bitcoin blockchain.

• SCj ∈ S: The j-th block in the BitSync sidechain.

• HBi
= Hash(Bi): The hash of Bitcoin block Bi.

• HSCj
= Hash(SCj): The hash of BitSync block SCj .

• PoWB(Bi): The proof-of-work for Bitcoin block Bi.

• PoWS(SCj): The proof-of-work for BitSync block SCj .

• CanonicalChainB: The canonical (longest valid) Bitcoin chain.

• CanonicalChainS: The canonical (longest valid) BitSync chain.

• OP_BLOCKHASH(n): An opcode that returns HBn
, the hash of the n-th Bitcoin block in

the canonical chain.

• ZK_Proof: A zero-knowledge proof.

• U : A user initiating a withdrawal.

• n: The nonce in the Bitcoin block header.

• c: The unique chain ID assigned to BitSync.

• h: The height of the chain Merkle tree in the coinbase transaction.

• getExpectedIndex(n, c, h): A function computing the expected index of BitSync’s commitment
in the chain Merkle tree.

• AuxPOW: The Auxiliary Proof-of-Work protocol used for merged mining.
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A.2 AuxPOW Protocol Overview
The AuxPOW protocol enables merged mining, allowing miners to mine on both Bitcoin (B) and
BitSync (S) simultaneously. Key aspects of AuxPOW relevant to our analysis include:

1. Chain ID (c): A unique identifier for S, ensuring commitments to different chains are
distinguishable.

2. Chain Merkle Tree: A Merkle tree included in the Bitcoin coinbase transaction’s scriptSig,
containing commitments to auxiliary chain block hashes.

3. getExpectedIndex Function: Determines the expected index i in the chain Merkle tree for
a given chain ID c, nonce n, and tree height h.

A.2.1 getExpectedIndex Function Pseudocode

The getExpectedIndex function is defined as:

Algorithm 1 getExpectedIndex Function

1: function getExpectedIndex(n, c, h)
2: mod← 2h

3: rand← n
4: rand← (rand× 1103515245 + 12345) mod mod
5: rand← (rand+ c)× 1103515245 + 12345
6: rand← rand mod mod
7: return rand
8: end function

This function ensures that for each combination of n, c, and h, the expected index i is unique
and deterministic.

A.2.2 AuxPOW Validation Checks Pseudocode

The validation of an AuxPOW block includes the following steps:

15



Algorithm 2 AuxPOW Validation Checks

1: procedure ValidateAuxPOW(AuxPOW, HSCj
, c, n, h)

2: Ensure that the chain Merkle branch size is valid.
3: if Number of chain Merkle branches > 30 then
4: Reject block
5: end if
6: Compute the chain Merkle root M using HSCj

and the chain Merkle branch.
7: Verify that M is included in the coinbase transaction’s scriptSig.
8: Verify that only one AuxPOW header exists in the scriptSig.
9: Verify that the expected index i matches the index in the chain Merkle branch:

10: i← getExpectedIndex(n, c, h)
11: if Chain Merkle branch index ̸= i then
12: Reject block
13: end if
14: Accept block if all checks pass.
15: end procedure

A.3 Withdrawal Process Description
The withdrawal process involves the following steps:

A.3.1 1. Inclusion of Bitcoin Block Hash in BitSync Block

Each BitSync block SCj includes a field HBi representing the hash of the latest Bitcoin block Bi.
This establishes a reference point to the Bitcoin blockchain.

A.3.2 2. Commitment in Bitcoin Coinbase Transaction

Bitcoin miners, when producing block Bi+1, include a commitment to the latest BitSync block hash
HSCj

in the coinbase transaction. This mutual reference reinforces the link between the chains.

A.3.3 3. User Initiates Withdrawal on BitSync

The user U performs a burn transaction txburn on BitSync, effectively removing the tokens from
circulation. This transaction is included in BitSync block SCj .

A.3.4 4. Zero-Knowledge Proof Construction

The user U constructs a zero-knowledge proof ZK_Proof that demonstrates:

1. The burn transaction txburn is included in SCj .

2. SCj includes HBi
.

3. The proof-of-work up to SCj is valid, i.e., PoWS(SCj) is valid.

4. Bitcoin block Bi+1 includes a commitment to HSCj in its coinbase transaction.
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A.3.5 5. Submission of Proof to Bitcoin Network

The user U submits a special transaction txwithdraw to the Bitcoin network, including:

• The zero-knowledge proof ZK_Proof.

• The reference to HBi .

A.3.6 6. Verification on Bitcoin Network

Bitcoin nodes verify the transaction txwithdraw by checking:

1. HBi
corresponds to a block in the canonical Bitcoin chain via OP_BLOCKHASH(i) = HBi

.

2. The zero-knowledge proof ZK_Proof is valid and references the canonical chains.

A.3.7 7. Releasing Funds

If verification succeeds, the Bitcoin network processes txwithdraw, releasing the corresponding bit-
coins to U .

A.4 Formal Proof of Security Against Private Fork Attacks
We present a formal proof demonstrating that the withdrawal mechanism prevents private fork
attacks by leveraging the AuxPOW protocol and the pseudocode provided.

A.4.1 Theorem

Theorem 1. Within the AuxPOW protocol, it is impossible for an attacker to create a private fork
of the BitSync sidechain or the Bitcoin blockchain that produces a valid withdrawal proof, due to
the enforcement of unique chain ID commitments, the getExpectedIndex function, and the use of
OP_BLOCKHASH for canonicalness.

Proof.

Case 1: Private Fork of BitSync Chain Assume an attacker A attempts to create a private
BitSync chain S′ and produce a fraudulent burn transaction tx′

burn included in a sidechain block
SC ′

k. The attacker aims to use SC ′
k to construct a zero-knowledge proof ZK_Proof ′ for withdrawal.

1. Uniqueness of Chain ID Commitment
According to the AuxPOW protocol and Algorithm 2, only one commitment per chain ID c
can be included in the Bitcoin block’s coinbase transaction. The protocol enforces:

• Only one AuxPOW header exists in the coinbase transaction.
• The commitment for chain ID c must be at the expected index i, computed by getExpectedIndex

(Algorithm 1).

2. Impossibility of Including Multiple Commitments
The deterministic nature of i ensures that miners cannot include multiple commitments for
the same chain ID c without violating the protocol rules. Any attempt to include both HSCj

and HSC′
k

for c in the same Bitcoin block Bi+1 would result in a conflict at index i.
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3. Verification Failure

The zero-knowledge proof ZK_Proof ′ must satisfy the conditions:

tx′
burn ∈ SC ′

k

SC ′
k ∈ CanonicalChainS

HBi
is included in SC ′

k

HSC′
k

is included in Bi+1

HBi
= OP_BLOCKHASH(i)

Since SC ′
k is not part of CanonicalChainS, and HSC′

k
is not committed in Bi+1 without

violating the AuxPOW rules, the proof fails. Note that OP_BLOCKHASH would be likely
validated against the witness input of the Bitcoin block hash into the verification circuit, and
checked out of the circuit in script.

4. Conclusion

The withdrawal verification on Bitcoin will fail because the proof cannot be constructed to
satisfy all conditions without violating protocol rules. Thus, the attacker cannot perform a
fraudulent withdrawal using a private fork of the BitSync chain.

Case 2: Private Fork of Bitcoin Chain Assume A attempts to create a private Bitcoin chain
B′ to include commitments to HSC′

k
.

1. Canonicalness via OP_BLOCKHASH

The OP_BLOCKHASH opcode only returns block hashes from the canonical Bitcoin chain CanonicalChainB.
Any blocks from B′ are not recognized.

2. Infeasibility of Sustaining a Private Bitcoin Fork

Without controlling the majority of Bitcoin’s hash rate, A cannot produce a longer chain
than CanonicalChainB. The network will reject B′ in favor of the canonical chain.

3. Verification Failure

The zero-knowledge proof ZK_Proof ′ referencing B′ will fail, as HBi = OP_BLOCKHASH(i)
will not match any block in B′.

4. Conclusion

The withdrawal mechanism prevents A from using a private Bitcoin fork to facilitate fraud-
ulent withdrawals, as the verification relies on data from the canonical Bitcoin chain.

Integration of Pseudocode in Proof The validation steps in Algorithm 2 are critical in en-
forcing the protocol rules that prevent the attack scenarios:

• The check for a single AuxPOW header and chain Merkle root ensures uniqueness of commit-
ments.

• The getExpectedIndex function (Algorithm 1) provides a deterministic index, preventing
multiple commitments for the same chain ID c.
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• The verification of the chain Merkle branch and expected index in AuxPOW validation pre-
vents inclusion of unauthorized sidechain blocks.

Final Conclusion By enforcing strict protocol rules through the AuxPOW validation checks and
leveraging OP_BLOCKHASH for canonicalness, the withdrawal mechanism ensures that only valid with-
drawals referencing the canonical Bitcoin and BitSync chains are accepted, effectively preventing
private fork attacks.

■

A.5 State Representation and Transition Diagrams
A.5.1 State Variables

• SS: State of the BitSync blockchain.

• SB: State of the Bitcoin blockchain.

• Tburn: Set of burn transactions on BitSync.

• Twithdraw: Set of withdrawal transactions on Bitcoin.

• U : User performing the withdrawal.

A.5.2 State Transition Functions

On BitSync When U performs txburn:

SS
txburn−−−−→ S′

S

Tburn ← Tburn ∪ {txburn}

On Bitcoin When U submits txwithdraw:

SB
txwithdraw−−−−−−→ S′

B

Twithdraw ← Twithdraw ∪ {txwithdraw}
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A.5.3 Process Flow Diagram

Start Burn on BitSync txburn Construct ZK_Proof Submit txwithdraw

Verify ZK_ProofAccept Withdrawal

Reject Withdrawal

Valid

Invalid

Figure 5: Process Flow of the Withdrawal Mechanism

A.6 Mathematical Representation of the Zero-Knowledge Proof
The zero-knowledge proof ZK_Proof must satisfy the following conditions:

1. Prove knowledge of txburn such that txburn ∈ SCj and SCj ∈ CanonicalChainS.

2. SCj includes HBi
.

3. PoWS(SCj) is valid up to SCj .

4. Bi+1 includes a commitment to HSCj in its coinbase transaction.

5. HBi
= OP_BLOCKHASH(i).

A.6.1 Formal Statement

Find txburn, SCj , Bi, Bi+1 such that:

txburn ∈ SCj

SCj ∈ CanonicalChainS

HBi
is included in SCj

PoWS(SCj) is valid
Bi+1 ∈ CanonicalChainB

HSCj
is included in Bi+1

HBi
= OP_BLOCKHASH(i)

Prove that these conditions hold without revealing txburn or other private data.
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A.7 Security Analysis Against Attacks
A.7.1 1. Double-Spending Attacks

On BitSync Since txburn is included in SCj and SCj ∈ CanonicalChainS, the burn is irreversible
on the sidechain.

On Bitcoin The zero-knowledge proof ensures that the funds are released only once, preventing
double-spending on the Bitcoin network.

A.7.2 2. Replay Attacks

Including specific block hashes HBi
and HSCj

tied to the canonical chains prevents replay attacks,
as each withdrawal is unique to the chain states at specific points in time.

A.7.3 3. Fraudulent Proofs

The use of zero-knowledge proofs ensures that only valid proofs constructed with correct data
can pass verification. It is computationally infeasible to forge a valid proof without the required
knowledge.

A.7.4 4. Private Fork Attacks

As demonstrated in the formal proof, the protocol prevents private fork attacks by:

• Enforcing unique chain ID commitments via the AuxPOW protocol.

• Utilizing the getExpectedIndex function to prevent multiple commitments for the same chain
ID.

• Relying on OP_BLOCKHASH to ensure references to the canonical Bitcoin chain.

A.8 Conclusion
Through formal definitions, pseudocode integration, mathematical proofs, and security analysis, we
have demonstrated that the withdrawal mechanism in BitSync securely allows users to redeem assets
back to the Bitcoin network without the risk of private fork attacks or unauthorized redemption.
The tight coupling between the chains, reliance on canonical chain data, and enforcement of protocol
rules via validation checks ensure the integrity and security of the process.
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